Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells
نویسندگان
چکیده
This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V) relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa), whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa), a Ca2+-activated K+ current (IK(Ca)), and a sustained voltage-dependent delayed rectifier K+ current (IKV). A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E)-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca) as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.
منابع مشابه
Facilitation of Ca2+-channel currents in bovine adrenal chromaffin cells.
Ca2+-channel currents in primary cultures of bovine adrenal chromaffin cells were studied using the whole-cell patch-clamp method. Parameters of a double-pulse protocol were systematically varied to characterize facilitation by a prepulse (P1) of Ca2+-channel current during a test pulse (P2). The pulses were usually separated by 30 msec, an interval sufficient for decay of any measurable P1 tai...
متن کاملHeterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release.
A cloned P2x-purinoceptor was transiently expressed in single isolated rat adrenal chromaffin cells and evaluated for the detection of released ATP. After cytoplasmic injection of the P2x complementary RNA (cRNA; 4-24 h), application of ATP produced an inwardly rectifying current over the voltage range -130 to -10 mV as measured by the whole cell patch-clamp technique. The dose-response curve f...
متن کاملHalothane directly modifies Na+ and K+ channel activities in cultured human alveolar epithelial cells.
During inhalational anesthesia, halogenated gases are in direct contact with the alveolar epithelium, in which they may affect transepithelial ion and fluid transport. The effects of halogenated gases in vivo on epithelial Na+ and K+ channels, which participate in alveolar liquid clearance, remain unclear. In the present study, the effects of halothane (1, 2, and 4% atm) on ion-channel function...
متن کاملModulation by endogenously released ATP and opioids of chromaffin cell calcium channels in mouse adrenal slices.
Modulation of high-threshold voltage-dependent calcium channels by neurotransmitters has been the subject of numerous studies in cultures of neurons and chromaffin cells. However, no studies on such modulation exist in chromaffin cells in their natural environment, the intact adrenal medullary tissue. Here we performed such a study in voltage-clamped chromaffin cells of freshly prepared mouse a...
متن کاملShort-term changes in the Ca2+-exocytosis relationship during repetitive pulse protocols in bovine adrenal chromaffin cells.
Stimulus-secretion coupling was monitored with capacitance detection in bovine chromaffin cells recorded in perforated patch mode and stimulated with trains of depolarizing pulses. A subset of stimulus trains evoked a response with a Ca2+-exocytosis relationship identical to that obtained for single depolarizing pulses (Engisch and Nowycky, 1996). Other trains evoked responses with enhanced or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017